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Interactive Albedo Editing in Path-Traced Volumetric Materials

MILOŠ HAŠAN and RAVI RAMAMOORTHI
University of California, Berkeley

Materials such as clothing or carpets, or complex assemblies of small leaves,
flower petals, or mosses, do not fit well into either BRDF or BSSRDF mod-
els. Their appearance is a complex combination of reflection, transmission,
scattering, shadowing, and inter-reflection. This complexity can be handled
by simulating the full volumetric light transport within these materials by
Monte Carlo algorithms, but there is no easy way to construct the necessary
distributions of local material properties that would lead to the desired global
appearance. In this article, we consider one way to alleviate the problem: an
editing algorithm that enables a material designer to set the local (single-
scattering) albedo coefficients interactively, and see an immediate update of
the emergent appearance in the image. This is a difficult problem, since the
function from materials to pixel values is neither linear nor low-order poly-
nomial. We combine the following two ideas to achieve high-dimensional
heterogeneous edits: precomputing the homogeneous mapping of albedo to
intensity, and a large Jacobian matrix, which encodes the derivatives of each
image pixel with respect to each albedo coefficient. Combining these two
datasets leads to an interactive editing algorithm with a very good visual
match to a fully path-traced ground truth.
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1. INTRODUCTION

Materials consisting of intricately intertwined fibers, such as cloth-
ing or carpets, or organic materials such as complex assemblies of
small leaves, flower petals, or mosses, do not fit well into either
BRDF or BSSRDF models. While they exhibit significant amounts
of internal light scattering, they are not locally well approximated
by flat slabs, for which this scattering could be solved analytically.
Instead, their appearance is a complex combination of reflection,
transmission, scattering, shadowing, and inter-reflection. This com-
plexity can, however, be handled by simulating the full volumetric
light transport within these materials by Monte Carlo algorithms.

Rendering of cloth at the yarn or fiber level has recently received
significant attention; for example, Jakob et al. [2010] introduced an
anisotropic formulation of radiative transfer especially suitable for
cloth. Zhao et al. [2011] have shown full light transport simulations
of highly detailed volumetric models of cloth, constructing the
fiber distributions from micro-CT scans of cloth samples. Schröder
et al. [2011] model fibers as hairs, and introduce a rendering
method that uses the statistical spatial distribution of fibers rather
than their precise geometry. We believe that similar Monte Carlo
simulations, which have been considered intractable in the past,
are going to become feasible within a few years for a much wider
range of materials.

However, one problem that prevents wider adoption of this ap-
proach is that there is no easy way to construct the necessary dis-
tributions of local material properties that would lead to the desired
global appearance. In this article, we consider one way to alleviate
the problem: an editing algorithm to help a material designer set
the local single-scattering albedo coefficients interactively, and see
an immediate update of the emergent appearance in the image. We
focus on optically thick materials; while some of our derivations
also hold for thin materials like fog, our approximations may not be
so good, and we have not explored these materials in depth.

Figure 1 shows an example edit using our approach. We start from
a homogeneous distribution and add high-resolution variation by
modifying the heterogeneous single-scattering albedo coefficients,
and finally adjust the overall mean free path of the material. Our
algorithm computes the update in material appearance at interactive
rates, including updates in the light diffusion, shadowing, and inter-
reflection. Figure 2 illustrates these emergent effects by separating
direct and indirect illumination components.

To achieve these edits, we study the function that maps the values
of material coefficients into pixel values, assuming a static scene
with fixed lighting. If we keep the properties of the scarf homoge-
neous, we can solve the albedo editing problem by precomputing
the albedo-intensity mapping: a one-dimensional, increasing func-
tion for every pixel that records the dependence of intensity I on
the single-scattering albedo α. On the other hand, if the number of
albedo coefficients is high (in the thousands or millions), this be-
comes a high-dimensional, nonlinear function; no general methods
to compress such functions into simpler ones are known. However,
the function clearly has special properties: increasing the scattering
albedo of one small yarn segment of a cloth model will increase the
intensity of a few pixels where the segment projects, while nearby
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Fig. 1. Left: A scarf modeled volumetrically as a fiber density distribution, rendered using full Monte Carlo light transport with multiple scattering. Middle:
Using our algorithm, the user can place heterogeneous patterns onto the scarf by independently setting the single-scattering albedos of over 260,000 yarn
segments and observing an interactive update of the light transport in the image. Right: An extension of our method allows a change in the mean free path of
the material, which makes the scarf appear more fluffy. (Scarf model from Kaldor et al. [2008], use approved by Steve Marschner.)

pixels will receive a subtle, low-frequency update. This suggests
similarity to a large body of previous work on precomputed light
transport, where similar edits are achieved by precomputing a light
transport matrix.

In this article, we combine these two ideas to achieve
high-dimensional heterogeneous edits: precomputing the albedo-
intensity curve and a large Jacobian matrix, which encodes the
derivatives of each image pixel with respect to each albedo co-
efficient. We also show extensions of the technique to combining
multiple Jacobians, and to editing the overall mean free path of the
material.

2. RELATED WORK

Relighting and precomputed light transport. Our work is
related to precomputed methods based on the linearity of light trans-
port [Nimeroff et al. 1994; Dorsey et al. 1995; Sloan et al. 2002;
Ng et al. 2003], but we focus on material rather than light editing.
We refer the reader to Ramamoorthi [2009] for a survey of recent
work in the area of precomputed light transport methods. Our goal
is to extend this rich (but linear) theory to the nonlinear problem
of editing heterogeneous material albedos. Recently, a precomputa-
tion approach has been applied to volumetric materials by Bouthors
et al. [2008], but not with the purpose of editing the materials.

BRDF editing. Material editing in the context of a Whitted ray-
tracer has been explored by Séquin and Smyrl [1989]. Ben-Artzi
et al. [2006] have explored BRDF editing under direct illumination
from an environment map. A solution for global illumination
effects has been included into a BRDF editing framework by
Ben-Artzi et al. [2008] and Sun et al. [2007]. The key observation
in these papers is that editing n BRDF multipliers in a scene with
d light bounces leads to an n-variable polynomial of degree d.
Unfortunately, representing this explicitly is only practical for 1
or 2 bounces; higher bounces can be approximated by a single
ambient term, but this is insufficient for scenes with significant
multiple bounces or scattering. In contrast, our approach uses a
precomputed nonlinear curve for homogeneous edits, combined
with a precomputed first-order approximation of heterogeneity;
both of these components are practically tractable in terms of
storage, even for very long light paths (we use light paths of length
100 in all our examples).

Subsurface scattering editing. The SubEdit paper [Song et al.
2009] uses a factored representation for editing the heterogeneous

Fig. 2. A separation of the direct (single-scattering) and indirect (multiple-
scattering) components of our scenes, illustrating their volumetric nature
and the importance of both short and long light paths. (Dragon model from
Stanford 3D scanning repository.)

BSSRDF of a translucent object. Wang et al. [2008] use the diffu-
sion equation to model subsurface scattering, and present a GPU
implementation fast enough to be used for real-time editing of
the material properties. However, these techniques (or any other
approaches based on BSSRDFs and/or diffusion approximations)
are not easily applicable to materials that are not locally well
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Fig. 3. Our mathematical framework is based on the path integral formu-
lation of light transport [Veach 1997], extended to account for volumetric
effects [Pauly et al. 2000]. This figure shows an example light path that
interacts with both surfaces and volumes. For simplicity, a homogeneous
volume is shown.

approximated by flat slabs, for example, for our scarf and rose exam-
ples. Furthermore, these methods do not include global illumination.

3. MATHEMATICAL FRAMEWORK

Previous precomputed light transport methods derive either from
the direct lighting equation for environment maps, or the rendering
equation of Kajiya [1986]. The material editing framework of Ben-
Artzi et al. [2008] derives from the operator formulation of Arvo
[1993]. However, in our case the path formulation of global illumi-
nation by Veach [1997] is much more natural, because it can account
for any combination of surface and volume scattering events within
one consistent framework. Since it expresses pixel intensity as a sin-
gle integral, it also greatly facilitates the computation of derivatives
with respect to material coefficients.

3.1 Path Formulation of Light Transport for Surfaces

In Veach’s formulation, the intensity of a pixel i is expressed as an
integral over all light paths in the scene passing through this pixel.
The contribution of each path is a product of a number of terms,
some of which depend on the materials in the scene.

Ii =
∫

�

fi(x̄)dμ(x̄) (1)

Here μ is a measure on the path space � = ⋃
l≥1 �l , and �l

is the space of paths with l segments, x̄ = x0x1 . . . xl , such that
x0 is the camera position, x1 is the surface point directly visible
through the pixel, xl is on a light source, and x2, . . . , xl−1 are any
light bounce points in the scene.

The contribution fi(x̄) of any single path x̄ = x0x1 . . . xl is the
product of a pixel weight term Wi(x0←x1), a light emission term
Le(xl−1←xl), geometry terms G(xk↔xk+1, z) corresponding to each
segment of the path, and material terms M(xk−1←xk←xk+1, z) cor-
responding to every vertex.

fi(x̄) = Wi(x0←x1) · Le(xl−1←xl)
l−1∏
k=1

G(xk↔xk+1)M(xk−1←xk←xk+1)

As usual, we denote by arrows the direction of light flow, and use
a two-way arrow to indicate symmetry. Let’s look at these terms in
more detail.

—The pixel weight Wi(x0←x1) expresses how much of the path
contributes to the pixel. If we assume a box filter and a pinhole
camera model, the pixel weight becomes just a binary indicator
function that equals 1 if the path passes through pixel i and
0 otherwise. Extensions to other filters and camera models are
possible, and orthogonal to our editing technique.

—The emission term Le(xl−1←xl) is the radiance emitted by the
surface point xl in the direction of xl−1. Strictly speaking, this
formulation only works for area light sources, but extensions
to point lights and environment maps are again possible and
orthogonal to material editing.

—The geometry term G(xk↔xk+1) is a product of the binary visi-
bility function V (xk, xk+1) that is 0 if the given segment contains
occlusion and 1 otherwise, the 1/‖xi − xi+1‖2 distance fall-off
term (except the first camera segment and segments connecting
to infinitely distant lights), and cosine terms between the segment
and the local normal on each surface or area light vertex.

—The material term M(xk−1←xk←xk+1) is normally equal to the
BRDF fr (xk−1←xk←xk+1, z). It can also be extended to two-sided
BSDFs (e.g., the rough glass model of Walter et al. [2007]).

3.2 Extending the Path Formulation to Volumes

Veach’s formulation can be extended to handle volumetric scattering
and absorption as well: the vertices xk can be created inside or on
the boundaries of volumetric media, and the contribution fp(x̄) can
be extended to account for these effects [Pauly et al. 2000] (see also
Figure 3). This volumetric extension is also discussed in more detail
in the supplementary material to Jakob et al. [2012].

The radiative transfer theory was introduced to graphics by
Kajiya [1984], but is used in many areas of physics and other sci-
ences (e.g., oceanography, geoscience, medical imaging). While
fully describing the theory is well beyond our scope, we sum-
marize here a few main concepts, and their inclusion in the path
formulation.

Isotropic volumes. A homogeneous, isotropic volume (with
an isotropic phase function) can be described by its scatter-
ing coefficient σs and absorption coefficient σa , which express
the expected number of scattering/absorption events per unit ray
length (and therefore have values in the range [0, ∞) and units
of mm−1). The extinction coefficient σt is defined as σs + σa , and
the single-scattering albedo as the fraction α = σs/σt . Heteroge-
neous isotropic media can be described by making the coefficients
spatially variant: we will write σs(x) instead of σs , etc.

The volume rendering equation, which is a reformulation of the
integro-differential radiative transfer equation, expresses the radi-
ance L(x, ω) at a point x inside a volume as

L(x, ω) =
∫ y

x

τ (x, x ′)
σs(x ′)

4π

∫
S2

L(x ′, ω′)dω′dx ′

+ τ (x, y)L(y, ω) + Le(x, ω). (2)

Here y = r(x,−ω) is the first point on the boundary of the medium
that is hit by a ray from x in direction −ω (so the integral is over
the segment between x and y). L(y, ω) is the radiance entering
the volume predicted by the standard rendering equation. Note that
y could either be on a surface or on the boundary of a surfaceless
volume; both cases can be handled by the path formulation. Le(x, ω)
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is volume emission (always zero in our examples), and

τ (y1, y2) = exp

(
−

∫ y2

y1

σt (y)dy

)

is the transmittance, that is, the fraction of light that passes through
the line segment (y1, y2) without being absorbed or out-scattered.

Recursively expanding this equation yields the extension of the
path formulation (similarly to the surface path formulation deriva-
tion by expanding the rendering equation [Veach 1997]). The mate-
rial term M(xk−1←xk←xk+1) for vertices in the volume will be equal
to σs(xk)/4π . The geometry term G(xk↔xk+1) will not contain co-
sine terms for vertices in the volume, since there are no cosines in
(2), and it will additionally contain the factor τ (xk, xk+1).

Anisotropic volumes. We support Jakob et al.’s [2010] fully
anisotropic version of the radiative transfer equation, which replaces
the coefficients σs(x) and σt (x) by direction-dependent quantities
σs(x, ω) and σt (x, ω), and allows for a fully anisotropic (i.e., not
rotationally invariant) phase function fp(ω←x ′←ω′). It can also be
formulated as a pure integral equation

L(x, ω) =
∫ y

x

τ (x, x ′)σs(x
′, ω)

×
∫

S2
fp(ω←x ′←ω′)L(x ′, ω′)dω′dx ′

+ τ (x, y)L(y, ω) + Le(x, ω), (3)

where

τ (y1, y2) = exp

(
−

∫ y2

y1

σt (y, y1→y2)dy

)
.

The path formulation can be obtained by a minor modification of
the isotropic case, by setting the material term M(xk−1←xk←xk+1) =
σs(x ′, ω)fp(ω←x ′←ω′), and using the anisotropic version of τ in the
geometry term. Jakob et al.’s microflake model is one particular way
to define the functions ωs , ωt , and fp , which satisfies physical con-
straints of reciprocity and energy conservation. We use the variation
from Zhao et al. [2011], which requires a fiber orientation for each
spatial point and a global fiber roughness parameter; see the original
papers for further information. Our current system cannot edit the
phase function.

3.3 Mapping from Single-Scattering Albedos
to Pixels

In full generality, every point x in the volume can be parameterized
by independent scattering and extinction functions σs(x, ω) and
σt (x, ω), and phase function fp(ω←x ′←ω′). The final appearance of
the scene is a complicated, indirect function of these parameters,
emerging through single and multiple scattering, shadowing, inter-
reflection, and coupling with other surfaces in the scene. Interactive
editing of all of these parameters independently does not appear
tractable. To make progress on this problem, let us first consider the
important subproblem of editing spatially varying single-scattering
albedos α(x) ∈ (0, 1). (Note that we additionally assume the albe-
dos themselves are not directionally dependent; therefore, we can
write σs(x, ω) = α(x)σt (x, ω).) We will also mention extinction
editing in Section 7.

We discretize the function α(x) into n piecewise homogeneous
cells C1, . . . , Cn, defining the albedo vector α = (α1, . . . , αn). (In
the following, we will use bold font for vectors of coefficients, to
distinguish them from scalar values. We will also assume monochro-
matic edits, remembering that an extension to RGB is straightfor-
ward.) These cells can have any shape, and other volume parameters

(extinction, phase function) do not have to be aligned with the cells
in any way. The only requirement is that the cells are disjoint, and
their union covers all points where volume scattering could occur.

Let us further fix a pixel, so that we can study the function
I : R

n→R that computes the intensity of the given pixel as a function
of the albedo vector. Using Eq. (1), and making the dependence on
α explicit, we can write

I (α) =
∫

�

f (x̄, α)dμ(x̄).

Recall that f (x̄,α) is a product of pixel weight, light emission,
geometry, and material terms. Crucially, the only terms that depend
on the albedo vector are the material terms for path vertices that
correspond to volume scattering events. If xk is a scattering event
that occurs in cell Cj , then

M(xk−1←xk←xk+1) = αjσt (xk, xk→xk−1)fp(xk−1←xk←xk+1).

This means that we can write the function I (α) as

I (α) =
∫

�

a(x̄)
n∏

j=1

α
bj (x̄)
j dμ(x̄), (4)

where a(x̄) collects terms that do not depend on the albedo vector,
and bj (x̄) is an integer specifying the number of times the path x̄
scatters in the cell with albedo αj . In the following section, we will
outline our technique for interactive editing of α based on Eq. (4).

4. ALBEDO EDITING

In general, Eq. (4) is an integral over paths of all possible lengths;
however, if we restrict the path length to say 100, the expression
becomes a polynomial of degree 100 in n variables. Storing this
polynomial would require data of size �(n100), which is clearly
not within practical reach. Our goal is to avoid the curse of di-
mensionality in this problem. (Note that paths this long can still be
important for multiple scattering. Reducing the number to 10 leads
to darkening, and degree-10 polynomials would still be intractable.)

Clearly, we need to settle for approximations to compress this
function; but no standard methods to achieve such compression
of nonlinear, high-dimensional functions are available. This means
we have to utilize some special property of I (α). Fortunately, such
properties exist: an image containing a piece of clothing will not
change completely when the albedo of a small patch is increased.
Instead, the pixels local to this patch will most significantly increase
intensities, while other pixels will very slightly increase due to
global effects of light diffusion and inter-reflection.

This suggests similarity to relighting: if instead of albedos we
were projecting a pattern and changing the values of the projector
pixels, the resulting linear change in image pixel values would have a
similar local-global effect. Of course, this linearity does not hold for
albedo edits, but suggests that some linear (or affine) approximation
may be successful.

4.1 A First-Order Approximation

Let us first consider a simple Taylor expansion of the function
I (α). This does not yet satisfactorily solve the editing problem,
but does provide an important stepping stone. The expansion is
computed for a fixed assignment of albedos α0, which we will term
the expansion point. Intuitively, α0 represents a “starting” set of
albedo coefficients, and we would like to achieve our edits by linear
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Fig. 4. The nonlinearity of the albedo-intensity curve is caused by longer
paths becoming important as albedo approaches 1 (i.e., absorption ap-
proaches zero). First-order extrapolation will often result in underestimated
illumination; this can be severe especially if using a high-albedo expansion
point.

extrapolation from this point. A first-order approximation at α0 is
simply

I (α) ≈ I (α0) + ∇I (α0) · (α − α0),

where ∇I (α0) is the gradient of I (α) at α0 (an n-dimensional row
vector). Its entries can be computed as the first partial derivatives of
Eq. (4).

∂I

∂αi

= 1

αi

∫
�

a(x̄)bi(x̄)
n∏

j=1

α
bj (x̄)
j dμ(x̄) (5)

Note how the path formulation was highly useful in computing this
partial derivative; this would have required much more involved
manipulation if we used the original rendering equation and ra-
diative transfer equation. Furthermore, the form of the integral is
very similar to the original one, which suggests that a modifica-
tion of the same Monte Carlo algorithm used for computing I (α)
(i.e., the standard path-tracer) can be used to compute ∇I (α). The
gradient can even be computed if I contains effects other than the
volume itself: interreflection, arbitrary surface BRDFs, arbitrary il-
lumination, even depth-of-field effects. Note that the storage of this
first-order approximation is tractable, since we just need to store
a single n-dimensional vector ∇I (α0) and a single value I (α0) per
pixel.

4.2 Matching the Albedo-Intensity Curve

How about the accuracy of the simple affine approximation? The
problem is that, even in the homogeneous case of n = 1 (i.e., a
single editable albedo coefficient), it cannot capture the nonlinear-
ity of the albedo-intensity curve: the graph of pixel intensity as a
function of single-scattering albedo. This curve is a well-known
feature of radiative transfer, and is caused by longer paths becom-
ing important as albedo approaches 1 (i.e., absorption approaches
zero). Figure 4 illustrates the issue: extrapolation from a low-albedo
expansion point will result in underestimated illumination (though
in practice this may look acceptable, except it will lose the diffusion
look typical of high-albedo volumes). Even worse, starting from a
high-albedo expansion point will result in an approximation that
underestimates much more severely and can even become negative.

The preceding discussion of the homogeneous albedo-intensity
curve suggests an improvement to the simple first-order method:
could we somehow make our approximation match this curve,
while still retaining the tractability of the linear approximation?
In the following, we will formalize these two seemingly vague and
conflicting constraints.

Let us define the homogeneous diagonal as the set of homoge-
neous albedo vectors.

{α|α1 = · · · = αn}
We can now formalize the albedo-intensity curve as a function
Ih : (0, 1)→R that is the restriction of the full intensity I onto the
homogeneous diagonal.

Ih(α) = I (α, . . . , α)

Using this notation, we can express our constraints on the desired
approximation J as follows.

(1) We require the approximation J to be exact along the homo-
geneous diagonal. That is, for any homogeneous albedo vector
αh = (αh, . . . , αh), we require that

J (αh) = I (αh) = Ih(αh).

(2) We require that the partial derivatives of I and J match at a
given expansion point α0 = (α0, . . . , α0) on the homogeneous
diagonal.

∂J

∂αi

∣∣∣
α0

= ∂I

∂αi

∣∣∣
α0

The following theorem states that we can find an approximation
J of a particularly simple and tractable form that satisfies these
constraints.

THEOREM 1. An approximation J that satisfies both of the pre-
ceding conditions can be defined as

J (α) = Ih(w · α), (6)

where the (row) weight vector w is proportional to the gradient
∇I (α0), normalized such that

∑n

i=0 wi = 1.

PROOF. The first condition (equality of values) has to be true
along the whole homogeneous diagonal, that is, for all

αh = (αh, . . . , αh)T , αh ∈ (0, 1).

This is easy to see: since the weight vector is normalized and all
elements of αh are equal to a fixed scalar αh, we will simply have
w ·αh = αh. In other words, a blend (i.e., a linear combination with
weights summing up to 1) of a set of identical values will produce
the same value again.

To prove the second condition (equality of all partial derivatives),
we first find the partial derivative of J at any α, by a simple appli-
cation of the chain rule

∂J

∂αi

= I ′
h(w · α) wi,

where I ′
h is the derivative of the one-dimensional function Ih. Fur-

thermore, by definition of w (a normalized gradient), we have

wi =
∂I

∂αi

∣∣∣
α0∑n

j=1
∂I

∂αj

∣∣∣
α0

.
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11:6 • M. Hašan and R. Ramamoorthi

0
0.5

1

0

0.5

1
0

0.2

0.4

0.6

0
0.5

1

0

0.5

1
0

0.5

1

Fig. 5. Top: a scene with two volumetric cubes, and a detail of the edge
between these cubes. Bottom left: A single pixel’s intensity is a two-
dimensional, continuous, increasing function of the albedos α1 and α2. A
single linear approximation cannot capture the function well. Bottom right:
The precomputed curve method effectively “undoes” the curvature along
the homogeneous diagonal, making the function much more amenable for
linear approximation.

Now we can see the equality of partial derivatives at the expansion
point α0 = (α0, . . . , α0)T .

∂J

∂αi

∣∣∣
α0

= I ′
h(α0)wi =

⎛
⎝ n∑

j=1

∂I

∂αj

∣∣∣
α0

⎞
⎠ wi = ∂I

∂αi

∣∣∣
α0

This concludes the proof.

An alternative view of Eq. (6) is that we are using a first-order
expansion of the function I−1

h (I (α)), which is much “flatter” than
I (α). Figure 5 illustrates the insight behind the technique in two di-
mensions. A volumetric cube with fixed extinction is split into two
halves, with albedos α1 and α2. The intensity of the center pixel in
the detail view (top right) is a two-dimensional function I (α1, α2),
plotted in the bottom left. Clearly, any single first-order Taylor ex-
pansion of this function is only accurate in a small neighborhood of
the expansion point. In contrast, the function I−1

h (I (α1, α2)) (bot-
tom right) is much flatter. In fact, it is equal to the identity function
along the homogeneous diagonal α1 = α2, and off-diagonal val-
ues are relatively well approximated by first-order expansion points
along the homogeneous diagonal.

4.3 Our Algorithm

We have found an approximation that satisfies two desirable ac-
curacy conditions, but how do we turn it into a practical material
editing system? This system will have two components, precompu-
tation and runtime evaluation, similar to existing precomputed light
transport systems. The reader can also refer to Figure 6.

Precomputation. For a given expansion point α0, precomputa-
tion consists of these three steps.

(P1) Precompute the one-dimensional curve Ih(α) for discrete val-
ues of α. We use 10 points, distributed nonuniformly so that
higher-albedo regions are more densely sampled. At each point,
we use 1,024 to 4,096 Monte Carlo samples.

(P2) Compute the gradient ∇I (α0) using a modified path-tracing
algorithm, at a single expansion point α0. We use 512 to 1,024
samples per pixel, which leads to matrices with tractable storage
and reasonably low noise. The effects of the choice of α0 on
the result are discussed in Section 6.

(P3) Compute the weight vector w by normalizing the gradient
such that

∑n

i=1 wi = 1.

The aggregate result of this precomputation, for all pixels, is a set
of images of the homogeneous volume for k discrete albedo values,
together with an m × n weight matrix W , the rows of which are
the normalized gradients of pixel intensity with respect to albedo
coefficients. In our scarf result, we use m = 640 × 480 = 307, 200
pixels, n = 262, 401 albedo coefficients, and k = 8 discrete points
for the homogeneous curves Ih(α).

Storage cost. The storage requirements of the Jacobian matrix
add up to an m × k matrix of homogeneous images, and an m × n
weight matrix. The latter is by far the more costly component to
store. The problem is that W is dense: the derivative of a given
pixel’s intensity with respect to any material coefficient can be
nonzero, due to the global nature of light transport. How do we
make the precomputation, storage, and runtime evaluation of this
large matrix tractable?

Truncation of small elements to zero can cause subtly wrong re-
sults. Furthermore, adapting techniques from precomputed radiance
transfer also did not lead to satisfactory results in our experiments.
Harmonic bases are insufficient to control local detail. Wavelets are
better, but still required hundreds of preserved coefficients in our
tests, and imposing the wavelet basis on a set of albedo cells can
be tricky to implement, if the cells are not on a uniform grid (such
as our scarf and rose scenes). We address this challenge by noting
that any Monte Carlo path generation approach naturally results in
a sparse approximation to the weight matrix. Any path will scatter
in a finite number of cells, often much less than 100 (our maximum
path length). Using, say, 512 to 1024 paths per pixel will thus lead
to an approximation in which at most a few hundred elements are
nonzero. Storing such a matrix (e.g., in compressed row format)
becomes tractable. One may wonder if the noise resulting from this
approximation is not too high, but we have observed that in practice
this is quite acceptable: the noise in Ih is more important for the
final quality, and we are free to choose any number of samples there.
This simple technique works quite well in our tests, and is scalable
to large values of n (over 1.5 million in our rose example).

Runtime evaluation. The result of Theorem 1 can be inter-
preted as a two-step algorithm for each pixel.

(R1) Compute αw ← w · α.
(R2) Compute pixel value by table lookup: J (α) ← Ih(αw).

Step (R1) computes a single, local albedo value αw by multiplying
the sparse weight matrix W by the target vector of albedos α.
This local albedo can be thought of as a linear blend of the target
albedos: a first-order approximation to the “optimal” blend that can
be computed as I−1

h (I (α)). Note that αw is also defined for pixels
that are not on the volume itself but also, for example, on the floor
plane; it is used to compute global illumination effects due to the
volume on these pixels. Step (R2) then performs a simple linearly
interpolated table lookup to compute the value Ih(αw).

5. DATA PRECOMPUTATION

The precomputation component of our system is based on an un-
derlying path-tracing algorithm, though alternative Monte Carlo or
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Fig. 6. An overview of our algorithm. We precompute two pieces of data: a sequence of discrete samples of the homogeneous albedo-intensity mapping Ih(α)
(a), and the per-pixel weight vectors w, which are equal to the gradients ∇I (α0) at an expansion point α0, normalized so their sums are 1. (b) At runtime, a
desired vector of albedo values (c) is multiplied by the weight matrix to yield a per-pixel “local” albedo approximation; (d) (note that the noise occurs mostly
in areas of almost no variation of Ih and does not pose a problem). Finally, a per-pixel lookup of Ih is performed to arrive at the result (e).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 7. The precomputed albedo-intensity curves Ih for different pixels.
We use k = 10 discrete samples, spaced with decreasing step size towards
higher albedo.

photon mapping approaches would also be possible. Recall that the
precomputation phase consists of computing the m × k matrix I ,
which consists of k images of a homogeneous material, and an m×n
matrix W of weights, where m is the number of pixels and n is the
number of material coefficients, and the runtime phase consists of
multiplying the albedo vector by W and applying the homogeneous
lookup table to the resulting local albedo image.

Matrix I of albedo-intensity curves can be precomputed using
standard path-tracing. We use 10 discrete sample points, spaced
nonuniformly with higher sampling for higher albedos; this handles
homogeneous edits without objectionable artifacts (Figure 7).

The key implementation hurdle is to precompute the weight ma-
trix W at an expansion point α0. Recall that W is obtained from the
Jacobian matrix, by scaling its rows so that their sums are equal to
1. This reduces the problem into one of computing the gradients,

which were defined in Eq. (5) as

∂I

∂αi

= 1

αi

∫
�

a(x̄)bi(x̄)
n∏

j=1

α
bj (x̄)
j dμ(x̄).

Moreover, computing the value of the pixel (which the underlying
path-tracing already does) was expressed in Eq. (4) as

I (α) =
∫

�

a(x̄)
n∏

i=1

α
bj (x̄)
j dμ(x̄).

Note that these two expressions have a very similar form: the
gradient is given by the same path integral, except weighted by
the exponent bi(x̄) of albedo coefficient αj on this path. Given a
path x̄, the value bi(x̄) can be computed by counting how many
of its vertices lie in cell Ci . We will adapt a standard path-tracing
technique with explicit direct illumination connections to compute
the gradients. We compute all values of the gradient at once, instead
of running a separate integration for every (i, j )pair, which would
be impractically slow.

At a high level, path-tracing can be described as an algorithm
that generates a single subpath through the scene from the camera
(using importance sampling at every vertex if possible), and con-
nects every vertex on the subpath to a randomly chosen vertex on
a light source. Figure 8 shows an example, where a single subpath
x0x1x2x3, together with the light connections, can be treated as three
separate paths x0x1l1, x0x1x2l2, and x0x1x2x3l3. For each of these
paths x̄, and at every vertex, we have to find the albedo cell Cj that
the vertex belongs to, and increase the value of the corresponding
Jacobian by 1. Furthermore, this update has to be weighted by the
path contribution fi(x̄, ẑ0) and divided by the probability density of
the path being generated.

We are not aware of a similar technique that would attempt com-
putation of gradients with respect to material coefficients, in the
presence of full light transport. Gradients have been widely used in
graphics for interpolation [Ward and Heckbert 1992; Igehy 1999]
but only in the spatial domain. An elegant method to compute any
derivatives of a piece of code is described by Piponi [2004] but
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Fig. 8. Path tracing with direct illumination generates a single subpath
through the scene from the camera (red), and connects every vertex on the
path to a randomly chosen vertex on a light source. This can be treated as
three separate paths x0x1l1, x0x1x2l2, and x0x1x2x3l3.

ground truth α0 = 0 77 α0 = 0 99

Fig. 9. The effect of different expansion point albedos on the nature of the
approximation.

would not scale to n partial derivatives, where n can be over a
million.

6. RESULTS

We implemented the data precomputation in the Mitsuba C++
framework [Jakob 2010], and ran it on a 32-core Intel system with
hyper-threading (64 threads). The interactive material update is
implemented in CUDA and runs on an Nvidia GTX 480 GPU.
Figure 11 shows several examples of edits achieved with our
algorithm, and Figure 10 lists the performance, precomputation
times, and other information about our examples.

6.1 Illustration on Heterogeneous Cubes

An important question remains: for which α0 should we precompute
the first-order expansion, that is, the weight matrix W? Clearly, this
will impact the approximation error, but how exactly? Figure 9
shows a comparison of the effects of our approximation with a
path-traced reference image, for a cube with 33 cells (top) and a
cube with 643 cells (bottom). We show the effect for expansion
points (i.e., matrices W ) computed at three different values of α0:
0.77, 0.88, and 0.99. The mean free path of the material is 1mm
and the size of the cube is 10cm; with this amount of scattering, the
contribution of cells deep inside the material will be minimal, and
our gradient precomputation captures this.

As we can observe, the overall brightness and colors match the
reference for both choices of α0, but the choice influences the

Scene Cube 33 Cube 643 Dragon Scarf Rose
# pixels 512 ×512 512 ×512 640 ×480 640 ×480 640 ×480
# editable coefficients 27 262,144 262,144 262,401 1,430,565
Ih MC samples 1,024 1,024 4,096 1,024 1,024
Ih albedo samples 10 10 10 10 10
Ih data size 10 MB 10 MB 12 MB 12 MB 12 MB
precomputation 31 min 31 min 158 min 356 min 98.3 min
W MC samples 1,024 1,024 1,024 1,024 512
W data size 28 MB 566 MB 829 MB 273 MB 1197 MB
precomputation 1.3 min 1.8 min 3.6 min 29 min 12 min
runtime evaluation 6 ms 67 ms 81 ms 48 ms 272 ms

Fig. 10. Performance, precomputation times, and memory requirements
of our examples. Precomputation is on a single 32-core system with hyper-
threading (i.e., a total of 64 threads), while runtime is on an Nvidia GTX
480. Note the two components we precompute: the homogeneous curves
Ih and the weight matrices W . The data is precomputed for a single color
channel; RGB variation is added at runtime by edits that differ in color
channels.

amount of diffusion in the heterogeneous pattern. For the 33 cube,
the edge between materials shows an increasing amount of color
leaking as the expansion point albedo increases; similarly, for the
643 cube, the high-frequency detail in the pattern becomes blurred.
At α0 = 0.99, there is significant blurring, which produces an in-
teresting diffusion effect, but this diffusion is incorrect unless the
albedo coefficients being blurred are all close to 0.99 (in which case
the cube would look almost uniformly white anyway). Similarly,
low α0 may lead to edges that are too sharp. This suggests that if
only a single matrix W is used, one should use a medium value of
α0, for example, in the range 0.7 to 0.9. We have chosen a value
of α0 = 0.772 for the more complex results shown shortly. How-
ever, in Section 7, we will see that we can also combine multiple
expansion points.

6.2 More Complex Examples

We present three more complex scenes that demonstrate the prac-
tical capabilities of our editing system. The images are shown in
Figure 11. We also refer the reader to the supplemental video ac-
cessible through the ACM Digital Library, which demonstrates that
these edits can indeed be accomplished interactively.

Dragon. This scene demonstrates several additional features
that are not present in the preceding cube examples. A stencil
dragon mesh is used to cut out a part of the 643 voxel grid. The
size of the matrix W will be identical to the aforesaid cube ex-
ample: 307,200 rows and 262, 144 columns. The voxels outside
of the stencil will not have any influence on the appearance: the
corresponding columns of the Jacobian matrix will be zero (in the
relighting analogy, this is similar to lights that are pointed away
from the scene). Also note that the light diffusion through edges
and creases is correctly matching the ground truth: this is not trivial
to achieve using BSSRDF-based or diffusion-based methods, which
are derived under assumptions that are false for thin features. This
example also demonstrates the possibility of editing scattering ma-
terials in the presence of glossy (or any other) BRDFs. The edits to
the material fully interact with the scene, and are clearly reflected
in the floor.

Scarf. The scarf model has been created by Jonathan Kaldor
[Kaldor et al. 2008]. This scene shows the capability of our method
to edit heterogeneous single-scattering albedo parameters also in
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Rose: 1,430,565 coefficientsScarf: 262,401 coefficientsDragon: 262,144 coefficients

Our method: 272 msOur method: 48 msOur method: 81 ms

Path-traced reference: 15.1 minPath-traced reference: 26 minPath-traced reference: 15.8 min

Our method: 272 msOur method: 48 msOur method: 81 ms

Path-traced reference: 12.5 minPath-traced reference: 1.3 hoursPath-traced reference: 16 min

Fig. 11. Example edits computed at interactive rates with our algorithm. Each image is compared with a path-traced reference, showing the high accuracy of
our approximation. Note the range of effects that our technique captures: shadowing, interreflection within the volume and onto the floor (e.g., in the dragon
example), transmission through thin objects (e.g., petals of the rose) and light diffusion (in all examples).
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the presence of anisotropic scattering. The scarf is defined as a
high-resolution grid, where every voxel is assigned a “density”
(extinction) value and a local fiber orientation. To reduce storage
requirements, the data is stored using a two-level hierarchical grid.
These values, in conjunction with a global “fiber shininess” value
and a heterogeneous albedo field editable by our system, define the
phase function at every point in space using the microflake model
of Jakob et al. [2010]. We defined the albedo separately using a
Voronoi-diagram-like point cloud representation. We define a set
of 262,401 points along the yarns (in our implementation these
correspond to the vertices of the simulation mesh, but this is not
a requirement), and subdivide the space R3 into cells Cj based
on the nearest point. We are then able to assign separate single-
scattering albedos to each cell Cj . Note how our algorithm is able to
replicate complex features of the illumination, including diffusion,
self-shadowing, and inter-reflection.

Rose. This example presents the most complex stress test for our
method. The light transport within the rose is a complicated com-
bination of reflection, transmission, and scattering, and long light
paths carry a large fraction of the energy. We represent the petals
of the rose as solid meshes with very small but nonzero thickness:
the diameter of the flower is about 10cm, while the thickness of the
petals is 0.25mm. The material is represented as an isotropically
scattering volume with an extinction coefficient σt = 0.5mm−1.
Figure 11 (top right) shows the rose with a homogeneous albedo
setting of 99%, 95%, and 75% for red, green, and blue channels.
The yellowish glow in the center emerges naturally; there is no
albedo variation that would cause this. Our technique can be used
to change these values interactively, which could simplify the search
for the settings that yield the desired subtle effects. Moreover, we
also allow for a texture to be mapped onto the flower (Figure 11,
bottom right). Similar to the scarf example, a Voronoi-like point
cloud scheme is used to cover the petals with points whose albe-
dos are editable. We show results with almost 1.5 million albedo
coefficients, showing the scalability of our technique.

Discussion. Our method is essentially a first-order Taylor ex-
pansion, done in a way that preserves accuracy along the homoge-
neous diagonal. Therefore, the best accuracy can be expected for
material vectors close to the homogeneous diagonal, but in fact our
results are quite good even outside of this range, for example, in
the bottom scarf and rose images. The numerical error in the bot-
tom scarf and rose images in Figure 11, measured as the L2-norm
of the difference divided by the L2-norm of the reference, is 7%
and 6.1% respectively. Part of this is due to Monte Carlo noise: for
comparison, the difference between two different reference images
is 3.9% and 2.5%, respectively. Some differences beyond noise can
be perceived, but appear acceptable for an editing application.

7. EXTENSIONS

Combining expansion points. While a single expansion point
chosen at a medium albedo (e.g., α0 = 0.77) works very well for
many practical edits, we have also explored combining multiple
expansion points with different values of α0. As noted previously,
when using a single expansion point, the diffusion of high-frequency
texture detail will depend on the albedo at which the expansion point
was computed; the problem nonlinearity causes more diffusion in
areas where average albedo is high.

Figure 12 shows a cube of 643 voxels with a marble-like texture.
We computed the expansion points at 3 different albedos α0 (top
row). For each of these images and for every pixel, an intermedi-
ate result of the editing computation is the local albedo value αw ,

Fig. 12. Combining expansion points computed at 3 different albedos α0.
Each expansion point is most accurate for blending albedos close to its own
α0. Images computed with each of these expansion points separately are
shown in (a) through (c). For each pixel, we find the difference between pre-
dicted albedo and α0, and choose the expansion point where this difference
is minimal (d). We then pick the respective pixels from (a) through (c) and
combine them into (e).

as discussed in Section 4.3. This suggests a simple approach for
combining the values: simply choose the αw that is closest to the
respective α0 of the expansion point. This way we can construct
an expansion point index map, specifying which expansion point
should be used for each pixel of the image, which can be seen in
Figure 12(d). The result of this combined computation (e) is visually
closer to the path-traced reference solution than any of the single
expansion point images (a) through (c), but not dramatically so.

Overall mean free path editing. We have also explored edit-
ing the mean free path (extinction coefficient, or optical “density”)
of a material. Note that a large heterogeneous change to the density
could be used to change geometry, for example, creating holes in an
object, or even moving it to a different location, with the associated
updates in shadow and inter-reflection. This appears intractable in
practice, but we have addressed the important subproblem of editing
an overall multiplier of the mean free path. More precisely,

σt (x, ω) = ρσt (x, ω)′,

where ρ is a multiplier editable within some range [ρmin, ρmax],
and σt (x, ω)′ is a base extinction (which can be both heterogeneous
and anisotropic, as in the scarf model). In practice, this requires
precomputing (for each pixel) a two-dimensional function Ih(α, ρ),
instead of the one-dimensional Ih(α) used previously.

J (α, ρ) = Ih(w(ρ) · α, ρ)

In practice, this means two changes to the algorithm from
Section 4.3. First, the function Ih(α, ρ) will be discretized into a
two-dimensional array of images, for different values of α and ρ.
Second, the weight vector w(ρ) now depends on ρ; in other words,
the weight matrix can be different for different material extinctions.
Precomputing many matrices along the interval [ρmin, ρmax] would
be intractable in terms of storage; we instead use a simple approx-
imation of computing the matrices only at the endpoints ρmin and
ρmax and interpolating the in-between weights linearly. An example
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of this mean free path editing approach, applied to the scarf model,
is shown in Figure 1 (right).

8. LIMITATIONS AND FUTURE WORK

Our precomputation times are still relatively high; these could be
partially reduced by a GPU implementation. A speedup could be
achieved by improved precomputation of the Ih curves, reusing the
same paths for different albedos. We could also consider heteroge-
neous edits to the mean free path or phase function parameters. Our
approach may be adapted to settings where analytical BSSRDF ap-
proximations are used instead of full Monte Carlo simulations (e.g.,
skin). The method may also be suitable as the forward component
of an inverse system, such as that used for fabrication (a user would
set the materials of an object designed for 3D printing, and observe
an interactive preview of the fabricated appearance).

9. CONCLUSION

We presented an algorithm for editing heterogeneous single-
scattering albedos in volumetric materials with multiple scatter-
ing. We achieve interactive edits with high accuracy for examples
such as knitted cloth and a complex flower. Our solution combines
precomputed homogeneous edits (a problem with strong nonlin-
earity but only a single dimension) with large Jacobian matrices
that allow for significant heterogeneity, and are analogous to light
transport matrices from well-known relighting methods. The algo-
rithm considers the full light transport within the material, including
shadowing and inter-reflection; unlike analytical methods, it has no
limitation to flat surfaces. We also proposed extensions for overall
mean free path editing, and combining multiple Jacobian matrices.
Our editing approach could become a valuable tool in scene design,
as rendering research is increasingly turning towards modeling the
internal structure of materials to deliver higher realism.
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